COMMERCIAL HEAT PUMP

Heat water by using free energy from the air with our Air to Water models or by using waste heat from a chiller with our Water to Water models

CASE STUDY

AUSTRALIAN UNITY

PARRAMATTA, NSW

A modern office building comprising 14 levels of office space in Parramatta needed an end-of-trip facility.

Hot Water Requirements

With the project requirements calling for a highefficiency hot water plant capable of accommodating 10 showers and a 2000 litre load over a two-hour peak, the Rheem Commercial team sized and proposed a ducted commercial air to water heat pump. Configured to vent cool discharge air into the car park entrance via a sheet metal duct, the system's flexibility was also a major advantage when it came to accommodating the limited space available for the hot water plant.

Solution

In order to provide hot water boost in situations where higher than expected peak loads or low overnight temperatures preclude heat pump hot water recovery, a 15kW heating element was installed in the top third of the 2000 litre Rheem Stainless Steel storage tank.

As the largest supplier of commercial water heaters in Australasia, Rheem Commercial is now introducing two groups of heat pumps with two different technologies by collecting free heat energy from air and waste heat from the building chilling circuit.

Rheem can now boast an expanded, true commercial grade, high thermal efficiency, WaterMark certified heat pump range – in both air to water and water to water technologies.

These high efficiency models offer:

- Reduced running costs and CO₂ emissions for building owners
- High quality components for durability
- Suitability to most of New Zealand's climate
- Rheem iQ control provides on-board diagnostics, system configuration and optional BMS connectivity
- Two model sizes in each range that broaden your redundancy and shrink your plant footprint

Manufactured by Rheem in Australia, the Commercial Heat Pump range in New Zealand is supported by a nationwide service centre network along with New Zealand technical support.

AIR TO WATER HEAT PUMP

FOR WHERE ENERGY **EFFICIENCY IS ESSENTIAL**

HOT WATER OF C SAVE SAVE SENERGY

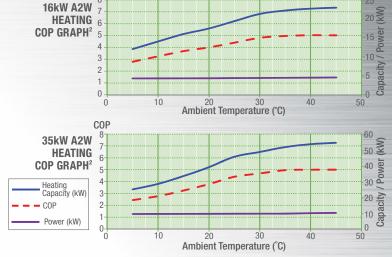
65°C hot water in a super-efficient, super-compact package.

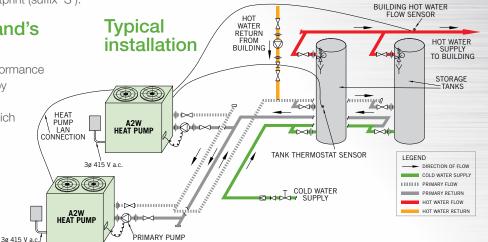
Highly efficient

Up to 25% of the operating cost of an electric water heater. Delivers hot water up to 65°C, with a system Coefficient of Performance (COP) of up to 4.01. This makes it substantially cheaper to run than electric, natural gas or ULPG. Highly efficient option for fuel redundancy. Heat pumps can also be used as a preheat to other boost fuel types.

Green points

Adds to the green points from end-of-trip facilities. The heat pump is designed to draw its air from and discharge within basement car parks without flueing, unlike gas systems.

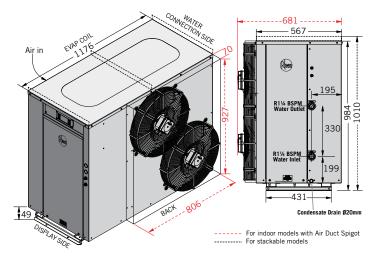

Multiple installation options


Designed for both vertical or horizontal discharge options, with a discharge fan option available in both ducted and non-ducted versions. Horizontal discharge models can also be stacked two high to reduce plant footprint (suffix 'S').

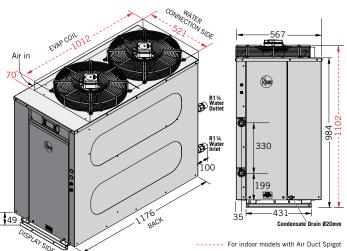
Suits most of New Zealand's climate*

Automatic defrost allows continued performance in low ambient temperature conditions by diverting a portion of the hot refrigerant to the evaporator coil to melt any ice which may form. In addition, the evaporator is dipped to provide extra protection in corrosive atmospheres, and the unit has been tested in ambient conditions as high as 40°C.

*Enquire at Rheem NZ Ltd for very cold climates



AIR TO WATER 16kW MODEL **TECHNICAL DATA**


16kW AIR TO WATER - ALL HORIZONTAL DISCHARGE MODELS

953016HS - Non Ducted stackable 953016H0 - Non Ducted 952016H0 - Ducted 952016HS - Ducted stackable

16kW AIR TO WATER - ALL VERTICAL DISCHARGE MODELS

95301600 - Non Ducted 95201600 - Ducted

RECOVERY								
Ambient Temperature °C Output (kW)	5 12	10 14.5	15 16.4	20 17.46	25 19.5	30 21.7	35 22.5	40 23
Recovery – Litres per hour								
20°C rise	516	624	705	751	839	933	968	989
25°C rise	413	499	564	601	671	746	774	791
30°C rise	344	416	470	501	559	622	645	659
35°C rise	295	356	403	429	479	533	553	565
40°C rise	258	312	353	375	419	467	484	495
45°C rise	229	277	313	334	373	415	430	440
50°C rise	206	249	282	300	335	373	387	396
55°C rise	188	227	256	273	305	339	352	360

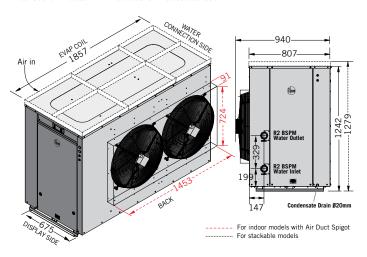
PRODUCT DATA		Ducted Exhaust	Non Ducted Exhaust
Heating Capacity ¹	kW	17.46	17.46
Power Input ¹	kW	4.01	4.01
COP ¹		4.0	4.0
Recovery @ 50°C Rise ¹	L/hr	3	300
Operating Range (ambient)	°C	5	-45
Outlet Temperature	°C		65
Refrigerant		R1	34a
TPR Valve Setting (VE/SS)	kPa	100	0/850
ECV Setting (VE/SS) ³	kPa	850	/700
Maximum Water Pressure Supply			
Without ECV (VE/SS) ³	kPa	800)/680
With ECV (VE/SS) ³	kPa	650)/550
Electrical Connection		3Phase/	415V/50Hz
Max Current per Phase (running, incl pump)	Amps	17.06	15.22
Minimum Circuit Size (per phase)	Amps		20
Air Flow (at maximum static pressure)	L/s	10	600
Maximum Static Pressure	Pa	80	20
Minimum Ventilation per inlet and outlet	m²		1
Minimum room volume for indoor installation ⁴	m³		7.5
Sound Pressure Level	dBA	59	@3m
Approx Weight Empty	kg	1	20
Approx Weight Full	kg	1	25
Storage per Heat Pump	L	400-	-4,000
Clearances			
Evap Coil Side	mm	5	500
Back (vertical discharge models)	mm		Nil
Back (horizontal discharge models)	mm	1:	200
Display Side	mm	8	350
Water Connections Side	mm	5	500
Top (vertical discharge models)	mm	1:	200
Top (horizontal discharge option)	mm		ove unit required rsonnel to stand

HEAT PUMP SIZING CHART				
Number of Heat Pumps in Parallel	1	2	3	4
Primary Pump		Grundfos	s CM 3-2	
Branch Size		4	0	
Header Size	40	50	65	80

Note: Header pipe sizing is based on a total length of 40m of primary flow and return piping and 20 bends, excluding equa-flow manifolds on storage tanks and heat pumps @ 1.2m/sec velocity. One pump per Heat Pump.

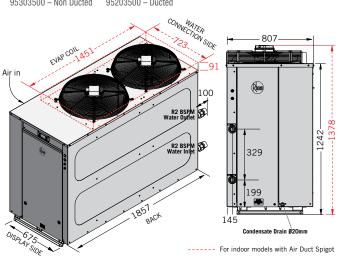
ACCESSORIES			
Storage Tank	Pump	BMS Card	LAN Cable
410L (VE)		17520 BACnet TCP/IP	
1000L to 5000L (SS)	CM 3-2	17521 BACnet MS/TP	17495
		17522 Modbus RS485	

^{1 20°}C ambient/60%RH, 39°C water in / 45°C water out.


² Non ducted models.

ECV not supplied with water heater
To comply with AS1677.2, the minimum room size permissible is 7.5m³ for 16kW and 17.73m³ for 35kW per heat pump for indoor installation. A larger room size is recommended for efficient heat pump operation.

AIR TO WATER 35kW MODEL **TECHNICAL DATA**


35kW AIR TO WATER - ALL HORIZONTAL DISCHARGE MODELS

953035HS - Non Ducted stackable 953035H0 - Non Ducted 952035H0 - Ducted 952035HS – Ducted stackable

35kW AIR TO WATER - ALL VERTICAL DISCHARGE MODELS

95303500 - Non Ducted 95203500 - Ducted

Ambient Temperature °C	5	10	15	20	25	30	35	40
Output (kW)	25.5	29	34.6	39.55	46.6	49.9	53	54.1
Recovery – Litres per ho	ur							
20°C rise	1097	1247	1488	1701	2004	2146	2279	2326
25°C rise	877	998	1190	1361	1603	1717	1823	1861
30°C rise	731	831	992	1134	1336	1430	1519	1551
35°C rise	627	713	850	972	1145	1226	1302	1329
40°C rise	548	624	744	850	1002	1073	1140	1163
45°C rise	487	554	661	756	891	954	1013	1034
50°C rise	439	499	595	680	802	858	912	931
55°C rise	399	453	541	618	729	780	829	846

PRODUCT DATA		Ducted Exhaust	Non Ducted Exhaust
Heating Capacity ¹	kW	39.55	39.55
Power Input ¹	kW	10.25	10.25
COP ¹		3.9	3.9
Recovery @ 50°C Rise ¹	L/hr	6	80
Operating Range (ambient)	°C	5	-45
Outlet Temperature	°C	(65
Refrigerant		R1	34a
TPR Valve Setting (VE/SS)	kPa	100	0/850
ECV Valve Setting (VE/SS) ³	kPa	850)/700
Maximum Water Pressure Supply			
Without ECV (VE/SS) ³	kPa	800)/680
With ECV (VE/SS)3	kPa	650)/550
Electrical Connection		380 - 415 Volts	/ 3 Phase / 50 Hz
Max Current per Phase (running, incl pump)	Amps	34.9	32.34
Minimum Circuit Size (per phase)	Amps	4	40
Air Flow (at maximum static pressure)	L/s	5830	5270
Maximum Static Pressure	Pa	100	20
Minimum Ventilation per inlet and outlet	m^2	1	.93
Minimum room volume for indoor installation ⁴	m³	17	7.73
Sound Pressure Level	dBA	690	@3m
Approx Weight Empty	kg	3	300
Approx Weight Full	kg	3	310
Storage per Heat Pump	L	400-	-8,000
Clearances			
Evap Coil Side	mm	10	000
Back (vertical discharge models)	mm	I	Nil
Back (horizontal discharge models)	mm	20	000
Display Side	mm	8	350
Water Connections Side	mm	6	600
Top (vertical discharge models)	mm	20	000
Top (horizontal discharge option)	mm		ove unit required rsonnel to stand

PUMP & PIPE SIZING CHART				
Number of Heat Pumps in Parallel	1	2	3	4
Primary Pump	Grundfos CM 10-1			
Branch Size		5	0	
Header Size	50	80	100	100

Note: Header pipe sizing is based on a total length of 40m of primary flow and return piping and 20 bends, excluding equa-flow manifolds on storage tanks and heat pumps @ 1.2m/sec velocity. One pump per Heat Pump.

ACCESSORIES			
Storage Tank	Pump	BMS Card	LAN Cable
410L (VE)		17520- BACnet TCP/IP	
1000L to 5000L (SS)	CM 10-1	17521- BACnet MS/TP	17495
		17522- Modbus RS485	

^{20°}C ambient/60%RH. 39°C water in / 45°C water out.

² Non ducted models. ³ ECV not supplied with water heater

⁴ To comply with AS1677.2, the minimum room size permissible is 7.5m³ for 16kW and 17.73m³ for 35kW per heat pump for indoor installation. A larger room size is recommended for efficient heat pump operation.

WATER TO WATER HEAT PUMP

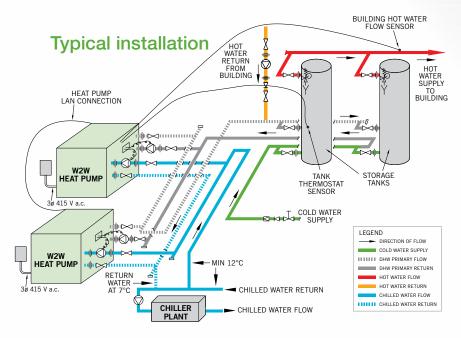
FOR WHERE ENERGY EFFICIENCY IS ESSENTIAL

REDUCED CHILLING

#7.0 COP EFFICIENCY*

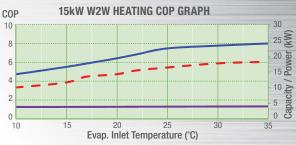
The Rheem Water to Water (W2W) range

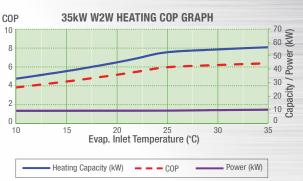
includes units using R134a for hot water heating up to 65°C, with a minimum entering water temperature on the building chiller loop of 12°C, giving a return water temperature of 7°C, with the units being compact and suitable for indoor or outdoor installation.



Efficiency

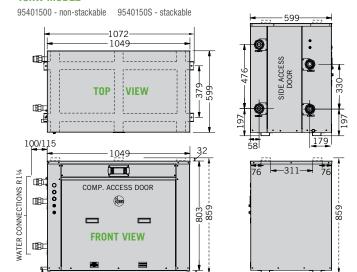
The ability of these units to provide a dual efficiency sees combined COPs of up to 7.0^5 . The efficiency in hot water production is up to 4.0^5 and this leads to substantial savings in energy use and heating cost. The savings are magnified where the cooling by-product lessens a building's chilling load. COP in cooling are up to 3.0^5 .


Return on investment


High COP of this product results in a very favourable return on investment making the W2W HP both a sound environmental and financial investment compared to gas and electric heating systems.

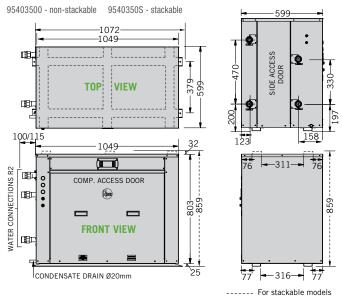
More key features

- Water Mark certified 316L stainless steel, double-wall brazed plate heat exchanger on domestic hot water side
- Multiple safeties including low temperature freeze protection and flow switch on the chilled water side
- Full commercial construction with marine grade aluminium case



STEADY, HOT & STRONG

WATER TO WATER 15kW & 35kW MODEL **TECHNICAL DATA**


15kW MODEL

5,7 - 316 - 7,7

35kW MODEL

CONDENSATE DRAIN Ø20mm

PUMP & PIPE SIZ	ING CH	IART						
		15	kW		35kW			
No. of Heat Pumps		HOT	SIDE			нот	SIDE	
in Parallel	1	2	3	4	1	2	3	4
Pump		Grundfos	s CM 3-2		Grundfos CM10-1			
Branch Size (mm)	40				50			
Header Size (mm)	40	50	65	80	50	80	100	100
No. of Heat Pumps		COLD	SIDE		COLD SIDE			
in Parallel	1	2	3	4	1	2	3	4
Pump	Grundfos CM 3-2					Grundfos	CM10-1	
Branch Size (mm)	40				50			
Header Size (mm)	40	50	65	80	50	80	100	100

MODEL	4=130	0=1.11	
MODEL	15kW	35kW	
Nominal Heating Capacity ⁵	15kW	34.75kW	
Nominal Cooling Capacity ⁵	11.3kW	25.9kW	
Power Input kW ⁵	3.7kW	8.8kW	
Coefficient of Performance (Heating) ⁵	4	4	
Coefficient of Performance (Cooling) ⁵	3	3	
Maximum DHW Temperature		°C	
Refrigerant	R1	34a	
Hot Water Side			
TPR Valve Setting (VE/SS)	1000/8	350 kPa	
ECV Setting (VE/SS) ³	850/7	00 kPa	
Maximum Water Supply Pressure			
- Without ECV (VE/SS) ³	800/6	80 kPa	
- With ECV (VE/SS) ³	680/5	50 kPa	
Hot Water Side Flow Rate	1.1L/s	2.2L/s	
Heat Exchanger Heating Design		less steel –	
<u> </u>		brazed plate	
Design Heating Temperature Difference	6 °K		
Design Pressure Drop	40	kPa	
Cold Water Side			
Maximum Water Supply Pressure		0kPa	
Cold Water Side Flow Rate	1.1L/s	1.85L/s	
Heat Exchanger Cooling Design		less steel – brazed plate	
Design Cooling Temperature Difference	5	°K	
Design Pressure Drop	40	kPa	
Minimum room volume for indoor installation	5.6m ³	15.34m³	
Electrical Connection	3 Phase / 4	115V / 50Hz	
Max Current per Phase (running, incl pumps)	13.96	29.94	
Minimum Circuit Size (per phase)	20A	40	
Sound Pressure Level	59dBa	@ 3m	
Approx Weight Empty	100kg	120kg	
Approx Weight Full	105kg	125kg	
Storage per Heat Pump	400L to 4000L	400L to 8000L	
Clearances			
Front	850)mm	
Back		mm	
Water Connections Side		mm	
RHS Side		mm	
Top (clearance above unit required for service personnel to stand)		nm	
Rating Conditions: Heating 39°C Water in 45°C water out 5	1°C CCT Cooling 12°C water	ur in 7°C water outlet	

Fating Conditions: Heating 39°C Water in, 45°C water out, 51°C SCT, Cooling 12°C water in, 7°C water outlet,

ACCESSORIES			
Storage Tank	Pump	BMS Card	LAN Cable
410L (VE)	2 x CM 3-2 (16kW)	17520- BACnet TCP/IP	
1000L to 5000L (SS)	` '	17521- BACnet MS/TP	17495
	2 x CM 10-1 (35kW)	17522- Modbus RS485	

Model	95401500			95403500		
Evaporator Inlet Temperature °C Output (kW)	12 15	20 19	35 24	12 34.75	20 45.9	35 55.9
Recovery- Litres per hour						
20°C rise	645	817	1032	1494	1974	2404
25°C rise	516	654	826	1195	1579	1923
30°C rise	430	545	688	996	1316	1602
35°C rise	369	467	590	854	1128	1374
40°C rise	323	409	516	747	987	1202
45°C rise	287	363	459	664	877	1068
50°C rise	258	327	413	598	789	961
55°C rise	235	297	375	543	718	874

CASE STUDIES

SYDNEY OPERA HOUSE

NEW SOUTH WALES

Rheem commissioned the installation of 2x Water to Water heat pumps deep within the Opera House structure.

Energy is drawn from the harbour to provide DHW for kitchen, washrooms and back of house.

The system is operating at a COP 7.0 which led to the 4 Star Green Star performance rating.

RSIC BUILDING, CANTERBURY UNIVERSITY

CHRISTCHURCH

Rheem installed 18 Air to Water heat pumps with 2x2000L stainless steel storage tanks to provide all the potable hot water for this large science facility over the Summer period when the large heating boilers were not in operation.

The system operates at a COP 4 and the 18 units are manifolded in 3 banks of 6 and linked to the two storage tanks.

SOUTHERN OCEAN LODGE

SOUTH AUSTRALIA

Southern Ocean Lodge is our very first installation of Rheem commercial Air to Water heat pump in 2008 providing efficient use of diesel generators for domestic hot water.

Let Rheem solve your next hot water problem.

Phone your local Rheem technical advisory service on 0800 657 336

TECHNICIANS WITH EXPERT PRODUCT KNOWLEDGE

CERTIFIED TO MEET AUSTRALIAN & NZ STANDARDS

PRIORITY ACCESS TO GENUINE SPARE PARTS

24/7 LOCAL CALL CENTRE SUPPORT

Rheem New Zealand Ltd.

475 Rosebank Rd, Avondale, Auckland 1026, New Zealand PO Box 19011, Auckland 1746, New Zealand www.rheem.co.nz

RHE311 by TIH on September 2019

STEADY, HOT & STRONG

NSTALL A RHEE