

Relationships built on trust

Gamcorp (Melbourne) Pty Ltd A.C.N 141 076 904 A.B.N 73 015 060 240 www.gamcorp.com.au solar@gamcorp.com.au Tel: +61 3 9543 2211

Structural Design Documentation

Tilt Array Frame System Spacing Table

According to AS/NZS 1170.2-2021 with ECO Rail – Tin Roof (Pierced Fix Roof) within New Zealand Terrain Category 2 & 3

For: CLENERGY AUSTRALIA 1/10 Duerdin St Clayton, VIC 3168

Job Number:10148-2-Rev1Date:8 March 2022

COPYRIGHT: The concepts and information contained in this document are the property of Gamcorp (Melbourne) Pty Ltd. Use or copying of this document in whole or in part without the written permission of Gamcorp constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Gamcorp (Melbourne) Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Gamcorp (Melbourne) Pty Ltd and its Client. Gamcorp (Melbourne) Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Relationships built on trust

Gamcorp (Melbourne) Pty Ltd A.C.N 141 076 904 A.B.N 73 015 060 240 www.gamcorp.com.au solar@gamcorp.com.au Tel: +61 3 9543 2211

- Job No: 10148-2-Rev1
- Client: CLENERGY AUSTRALIA

Project: Tilt Array Frame System Spacing Table

with ECO Rail – Tin Roof (Pierced Fix Roof)

Address: within New Zealand

Wind Terrain Category: Terrain Category 2 & 3

Australian/New Zealand Standards

AS/NZS 1170.0:2002	Structural design actions
	Part 0: General principles
AS/NZS 1170.1:2002 (R2016)	Structural design actions
	Part 1: Permanent, imposed and other actions
AS/NZS 1170.2:2021	Structural design actions
	Part 2: Wind actions
AS/NZS 1170.3:2003 (R2016)	Structural design actions
	Part 3: Snow and ice actions
AS/NZS 1664.1:1997 (R2020)	Aluminium structures
	Part 1: Limit state design
AS/NZS 4600:2018	Cold-formed steel structures
AS 4100:2020	Steel structures

Designed:	AA
Checked:	HS
Date:	Mar-22

Job: 10148-2-Rev1

Date: Mar-22 Designed: AA

Checked: HS

Relationships built on trust

Client:	CLENERGY AUSTRALIA	
Client:	CLENERGY AUSTRALIA	

Tilt Array Frame System Spacing Table with ECO Rail – Tin Roof (Pierced Fix Roof) Project:

within New Zealand

Address:

Tilt Array Frame System Spacing Table for Tin Roof (mm)

Type of Rail							
Type of Interface							
Solar Panel Dimension							
Terrain category							

ER-R-ECO Tilt Leg 2mx1m 2

Tilt angle to roof surface (α), $\alpha \leq 1$
--

Wind							Bu	ilding Hei	ight – h (m)						
Region		h	≤5		5 <h≤10< th=""><th></th><th>10<</th><th>h≤15</th><th></th><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤10<>					10<	h≤15		15 <h≤20< th=""></h≤20<>			
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	545	830	1125	1605	445	680	920	1420		615	830	1280		580	780	1205
NZ1&NZ2 with M _{lee}		440	595	910			490	750			445	675				635
NZ3		610	820	1265		500	675	1035	-	450	605	930			575	875
NZ4	435	660	895	1380		540	730	1125	-	490	660	1015		465	625	955

Tilt angle to roof surface (a), $15^\circ < a \le 25^\circ$

Wind							Bu	ilding Hei	ght – h (m)						
Region		h	≤5		5 <h≤10< th=""><th></th><th>10<</th><th>h≤15</th><th></th><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤10<>					10<	h≤15		15 <h≤20< th=""></h≤20<>			
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2		585	790	1215		480	645	990		435	585	895			550	840
NZ1&NZ2 with Mlee				640	-	-		525		-		475				450
NZ3		430	580	885			475	725			430	655				615
NZ4		465	630	960			515	790			465	710			440	670

Building Height – h (m) Wind Region h<5 5<h<10 10<h≤15 15<h<20 Corner Edge Intermed Intermed Intermed iate Edge Intermed Internal Interna Internal Corner Edge Corner Edge Internal Corner iate iate iate NZ1&NZ2 430 580 885 475 725 430 655 620 ----------------------NZ1&NZ2 with Mlee 470 --NZ3 ---------650 ---------535 ---------480 --------455 NZ4 -----460 705 --------580 ---------520 -------495

Tilt angle to roof surface (a), $25^{\circ} < a \le 60^{\circ}$

Job: 10148-2-Rev1 Date: Mar-22 Designed: AA

Checked: HS

Relationships built on trust

Client:	CLENERGY AUSTRALIA	
Client:	CLENERGY AUSTRALIA	

Tilt Array Frame System Spacing Table with ECO Rail – Tin Roof (Pierced Fix Roof) within New Zealand Project:

Address:

Tilt Array Frame System Spacing Table for Tin Roof (mm)

Type of Rail
Type of Interface
Solar Panel Dimension
Terrain category

ER-R-ECO Tilt Leg 2mx1m 3

Wind							Bu	ilding Hei	ight – h (m)						
Region		h:	≤5		5 <h≤10< th=""><th></th><th>10<</th><th>h≤15</th><th></th><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤10<>					10<	h≤15		15 <h≤20< th=""></h≤20<>			
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	655	1010	1375	1725	655	1010	1375	1725	565	865	1175	1630	505	770	1045	1565
NZ1&NZ2 with M _{lee}		535	725	1110		535	725	1110		465	625	955			560	855
NZ3	485	735	1000	1515	485	735	1000	1515	1	635	860	1330	-	570	770	1185
NZ4	525	800	1085	1540	525	800	1085	1540	455	690	935	1450		615	835	1285

Tilt angle to roof surface (a), $15^{\circ} < a \le 25^{\circ}$

Wind							Bu	ilding Hei	ght – h (m)						
Region		h	≤5		5 <h≤10< th=""><th></th><th>10<</th><th>h≤15</th><th></th><th colspan="4">15<h≤20< th=""></h≤20<></th></h≤10<>					10<	h≤15		15 <h≤20< th=""></h≤20<>			
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2	465	705	960	1485	465	705	960	1485		610	825	1270		545	735	1130
NZ1&NZ2 with Mlee			510	780	-	-	510	780		-	440	670	-			600
NZ3		520	700	1075		520	700	1075		450	605	925			540	825
NZ4		565	760	1170		565	760	1170		490	660	1010		435	585	895

Tilt angle to roof surface (a), $25^{\circ} < a \le 60^{\circ}$

Wind							Bu	ilding He	ght – h (m)						
Region		h:	≤5			5<†	າ≤10			10<	h≤15			15<	h≤20	
	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal	Corner	Edge	Intermed iate	Internal
NZ1&NZ2		520	700	1080		520	700	1080		450	605	925			540	825
NZ1&NZ2 with Mlee				570				570				495				440
NZ3			515	790	-	-	515	790	-		445	680	-			605
NZ4			560	855			560	855			485	740			430	660

Gamcorp (Melbourne) Pty Ltd A.C.N 141 076 904 A.B.N 73 015 060 240 www.gamcorp.com.au Tel: +61 3 9543 2211 u solar@gamcorp.com.au

Relationships built on trust

Client: **CLENERGY AUSTRALIA**

Tilt Array Frame System Spacing Table with ECO Rail – Tin Roof (Pierced Fix Roof) Project:

Address

Job: 10148-2-Rev1 Date: Mar-22 Designed: AA Checked: HS

within New Zealand

General Notes

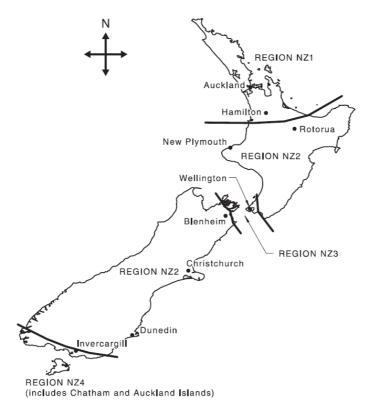
Components	Part Number	Description
ECO Rail	ER-R-ECO, ER-R-ECO/BA	
ECO Rail Splice	ER-SP-ECO, ER-SP-ECO/BA	
Standard Inter Clamp	ER-IC-ST, ER-IC-ST/BA	
Standard End Clamp	ER-EC-ST, ER-EC-ST/BA	
Universal Clamp	C-U/30/46, C-U/30/46/BA	As per drawing or test repor
Universal Clamp with Grounding Clip	C-U/30/46-G, C-U/30/46-G/BA	provided by client
Adjustable Tilt Leg	ER-TL-10/15, ER-TL-15/30, ER-TL-30/60	
Adjustable Tilt Leg, pre-assembled	ER-TL-10/15/PS, ER-TL-15/30/PS	
Adjustable Tilt Leg with L-feet, pre-assembled	TL-10/15/L/PS, TL-15/30/L/PS	
Fixed Tilt Leg, pre-assembled	ER-TL-5/PS, ER-TL-10/PS	

Tin roof interface spacing calculated based on 1.5mm steel purlin G450 or 35mm screw embedment into F7 (Pine) timber (JD4 seasoned timber). Note 2 (2 screws per each interface)

Recommended	screws
-------------	--------

Metal Purlins/Battens	Fasteners to use
0.42mm to 0.75mm (G550)	14g-10 TPI Teks screws or approved equivalent
1.2mm to 2.4mm (G450)	14g-10 TPI Teks screws or approved equivalent
Timber Purlins/Battens/Rafters	Fasteners to use
Softwood F7 (Pine) (JD4 seasoned timber)	14g-10 TPI T17 screws or approved equivalent
Hardwood F17 (JD3 seasoned timber)	14g-10 TPI T17 screws or approved equivalent

Maximum uplift wind pressure is limited to 5kPa. Note 3


Note 4 Deflection is limited to Minimum of L/120 and 15mm.

Note 5 Tilt angle is measured from roof surface.

Note 6 "--" states NOT SUITABLE FOR INSTALLATION.

Terrain category definition according to section 4.2.1 of AS/NZS 1170.2:2021 as follows: Note 7 Terrain Category 2 (TC2) - Open terrain, including grassland, with well-scattered obstructions having heights generally from 1.5 m to 5 m, with no more than two obstructions per hectare (e.g. farmland and cleared subdivisions with isolated trees and uncut grass). Terrain Category 3 (TC3) - Terrain with numerous closely spaced obstructions having heights generally from 3 m to 10 m. The minimum density of obstructions shall be at least the equivalent of 10 house-size obstructions per hectare (e.g. suburban housing, light industrial estates or dense forests).

Wind regions are shown in Figure 3.1(B) of AS/NZS 1170.2:2021. Note 8

Note 9 Base interface spacing to be multiplied by all applicable reduction/increase factors. Factored spacing less than one third of the panel width are not satisfied. (NOT SUITABLE FOR INSTALLATION)

Job: 10148-2-Rev1

Date: Mar-22 Designed: AA Checked: HS

Relationships built on trust

Client: CLENERGY AUSTRALIA

Project: Tilt Array Frame System Spacing Table with ECO Rail – Tin Roof (Pierced Fix Roof)

Address: within New Zealand

- Note 10 Wind direction multiplier (Md), Shielding multiplier (Ms) and Hill shape multiplier (Mh) are taken as 1.0.
- Note 11 Refer section 4.4 of AS/NZS 1170.2:2021 for Lee multiplier (Mlee) and topographic multiplier (Mt).
- Note 12 Lee multiplier (Mlee) is taken as 1.0 except for WR NZ1&NZ2 with Mlee which is taken as 1.35. Refer section 4.4.1 of AS/NZS 1170.2:2021 for topographic multiplier (Mt). See Note 25 for Lee zones map.
- Note 13 $\,$ No consideration has been taken on the effect of earthquake loads.
- Note 14 No consideration has been taken on the effect of snow loads within the alpine regions.
- Note 15 Refer section 2.3 and Figure 2.2 of AS/NZS 1170.3:2003 (R2016) for sub-alpine regions. Probability factor (kp) and Exposure reduction coefficient (Ce) are taken as 1.0 and Shape coefficient (µi) is taken as 0.7. See Note 26 for sub-alpine regions map.
- Note 16 Maximum panel weight is limited to 15kg/m².
- Note 17 Maximum panel width is limited to 1200mm.

Note 18 Maximum rail and panel width overhang is limited to the 40% of the allowable interface spacing.

- Note 19 PV panels clamping zone to be according to the manufacturer's specifications.
- Note 20 This certificate is applicable for the corrosion zones C1, C2 and C3. Correspondent roof interface must be used for each zone. For corrosion zones C4 and C5 a site specific certificate is required. Refer SNZ TS 3404:2018 for corrosion zones definitions.
- Note 21 This assessment is based on the capacity of the fixings of array frame to the structure and the array frame itself but not PV panel nor roof structures. Other building structures are deemed to be satisfactory. It is the responsibility of the installer to adopt the most critical spacing.
- Note 22 Following reduction/increase factors to be applied to the base spacing for different type of tophat, purlin or batten or if timber screw embedment is reduced by fixing to smaller timber depth.

Purlin/Batten	Fixing	Туре	Purlin thickness	Min. Embedment	Spacing Reduction / Increase					
Material	Interfac e	No. of screws	(mm)	(mm)	WR NZ1&NZ2	WR NZ1&NZ2 with M _{lee}	WR NZ3	WR NZ4		
Timber F7 (Pine)	Tin	1	-	25	-22%	-22%	-22%	-22%		
Timber F7 (Pine)	Tin	2	-	25	0%	0%	0%	0%		
Timber F7 (Pine)	Tin	1	-	30	-6%	-6%	-6%	-6%		
Timber F7 (Pine)	Tin	2	-	30	0%	0%	0%	0%		
Timber F7 (Pine)	Tin	1 or 2	-	35	0%	0%	0%	0%		
Timber F17 (HW)	Tin	1 or 2	-	25	0%	0%	0%	0%		
Timber F17 (HW)	Tin	1 or 2	-	30	0%	0%	0%	0%		
Timber F17 (HW)	Tin	1 or 2	-	35	0%	0%	0%	0%		
Metal (G550)	Tin	2	0.42	-	-60%	-60%	-60%	-60%		
Metal (G550)	Tin	2	0.48	-	-54%	-54%	-54%	-54%		
Metal (G550)	Tin	2	0.55	-	-48%	-48%	-48%	-48%		
Metal (G550)	Tin	2	0.75	-	-29%	-29%	-29%	-29%		
Metal (G450)	Tin	1	1.2	-	-38%	-38%	-38%	-38%		
Metal (G450)	Tin	2	1.2	-	0%	0%	0%	0%		
Metal (G450)	Tin	1	1.5	-	-22%	-22%	-22%	-22%		
Metal (G450)	Tin	2	1.5	-	0%	0%	0%	0%		
Metal (G450)	Tin	1 or 2	1.9	-	0%	0%	0%	0%		
Metal (G450)	Tin	1 or 2	2.4	-	0%	0%	0%	0%		

- Note 23 This certificate can be used for the installation of till legs on uncracked concrete roofs using one Chemset per till leg/bracket. The minimum pull-out tensile capacity of the fixing anchor must be higher than 5kN with drilled hole depth of 80mm. Concrete slab thickness to be minimum 150mm because of anchor cover requirement. Adopt Metal (G450), 2.4mm purlin thickness for increasing ratio.
- Note 24 Following reduction/increase factors to be applied to the base spacing for different panel length.

Danal Longth		Spacing Reduction / Increase							
Panel Length (mm)	No. of Rails	WR NZ1&NZ2	WR NZ1&NZ2 with M _{lee}	WR NZ3	WR NZ4				
1700	2	+5%	+17%	+5%	+5%				
1800	2	+3%	+11%	+3%	+3%				
1900	2	+2%	+4%	+2%	+2%				
2000	2	0%	0%	0%	0%				
2100	2	-6%	-6%	-6%	-6%				
2200	2	-10%	-10%	-10%	-10%				
2300	2	-14%	-14%	-14%	-14%				
2400	2	-17%	-17%	-17%	-17%				

Job: 10148-2-Rev1

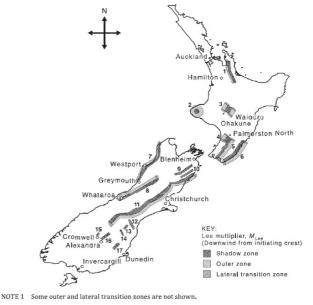
Date: Mar-22

Designed: AA Checked: HS

Relationships built on trust

Client: **CLENERGY AUSTRALIA**

Tilt Array Frame System Spacing Table with ECO Rail – Tin Roof (Pierced Fix Roof) Project:


within New Zealand

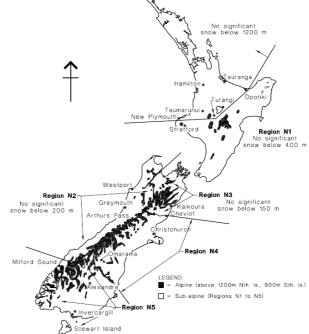
Address

Note 25 Interface spacing to be reduced as follows for sites in wind regions NZ1 & NZ2 with Mlee over 500m above sea level:

Site Elevation, E (m)	Spacing Reduction
E < 500	0%
500 ≤ E < 700	-19%
700 ≤ E < 900	-23%
900 ≤ E < 1200	-30%
E > 1200	N/A

	North Island					
1	Kaimai					
2	Taranaki					
3	Ruapehu					
4	Tararua					
5	Tararua and Orongorongo					
6	Coastal Wairarapa					
South Island						
7	West Coast North					
8	West Coast Alps					
9	Awatere					
10	Inland Kaikoura					
11	Southern Alps					
12	Hunter					
13	Hakataramea					
14	St Mary's					
15	Pisa					
16	Dunstan					
17	Rock and Pillar					

NOTE 2 For numbers shown, see the first column of Table 4.4.


Figure 4.6 — Locations of New Zealand lee zones

Note 26 Maximum Tin roof interface spacing in sub-alpine regions to be limited to follows for all roof zones. Lateral loading on array frame (due to accumulation snow under PV panels or exerted by drifts) has not been considered.

		Maximum Interface Spacing (mm)					
Site Elevation, E (m)	No. of Rails	Snow Region N1	Snow Region N2&N3	Snow Region N4	Snow Region N5		
E < 500	2	1775	1500	1240	1410		
500 ≤ E < 700	2	1490	1320	1160	1285		
700 ≤ E < 900	2	1340	1200	1100	1195		
900 ≤ E < 1200	2	1195	N/A	N/A	N/A		

2.3 NEW ZEALAND

- Alpine and sub-alpine regions are defined as follows:
- (a) N1 (southern portion of North Island of New Zealand, see Figure 2.2):
 - (i) Sub-alpine between 400 m and 1200 m.
 - (ii) Alpine ≥1200 m.
- (b) N2 (South Island of New Zealand): (i) Sub-alpine between 200 m and 900 m.
- (ii) Alpine ≥900 m.
- (c) N3 (South Island of New Zealand):
 - (i) Sub-alpine between 150 m and 900 m. (ii) Alpine ≥900 m.
- (d) N4 and N5 (South Island of New Zealand):
 - (i) Sub-alpine <900 m.
 - (ii) Alpine ≥900 m.

NOTE: This map is approximate only and altitude above mean sea level shall be used to determine snow r sub-alpine regions in the South Island (N2, N3, N4 and N5) the regions coincide with the 1988 county b Where an alpine region exists between sub-alpine regions, the alpine region separates the 2 sub-alpine regic extend downwards from 1200 m altitude). gions (which

FIGURE 2.2 NEW ZEALAND—APPROXIMATE LOCATIONS OF ALPINE AND SUB-ALPINE REGIONS

Job: 10148-2-Rev1

Date: Mar-22

Designed: AA Checked: HS

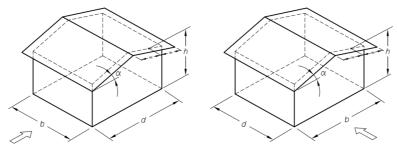
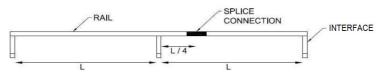
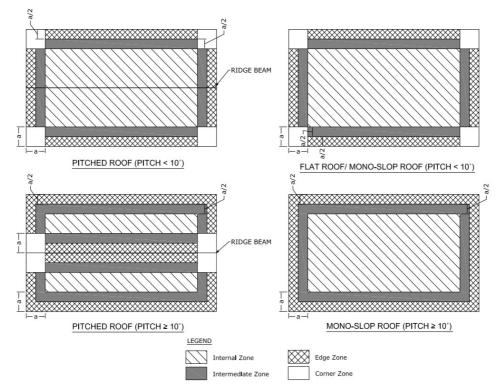
Relationships built on trust

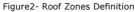
Client:	CLENERGY AUS	STRALIA
---------	--------------	---------

Project: Tilt Array Frame System Spacing Table with ECO Rail – Tin Roof (Pierced Fix Roof)

Address: within New Zealand

Note 27 Building height is average roof height of structure above ground. Refer Figure 1 for definition of h, d and b.


Figure 1 – h, d and b definition

Note 28 Rail splice connection must be placed a quarter length of the spacing of interface. No Splice connection should be placed at the centre of spacing or over the interface.

Note 29 Refer Figure 2 for definition of roof zones. The smallest spacing to be used for panels fall between two (or more) roof zones.

In Figure 2, the value of dimension "a" is the minimum of 0.2b or 0.2d, if (h/b) or (h/d) \geq 0.2; or 2h if both (h/b) and (h/d) < 0.2 (b & d are building dimensions and h is average roof height, see Figure 1)

- Note 30 Perpendicular installation (rails to purlins) for roofs with roof pitch greater than 10 degrees is not covered by this certification.
- Note 31 Installation of solar array to be done in accordance with the relevant Clenergy PV installation manual. Contact Clenergy if you are unable to comply with any of the above installation specifications.

1 Final Spacing . 990mm 645mm 480mm

0.9 Final Spacing 600mm 395mm --

0.95 Final Spacing 1490mm 1000mm 735mm 485mm

1.05 Final Spacing 1005mm 660mm 485mm --

Relationships built on trust

Client:

Examples

- Project:
- CLENERGY AUSTRALIA Tilt Array Frame System Spacing Table with ECO Rail Tin Roof (Pierced Fix Roof) within New Zealand Address:

Job: 10148-2-Rev1 Date: Mar-22 Designed: AA

Checked: HS

EAU	iipics			
Example 1	Tin Roof Wind Region Terrain Category Building Height Tilt angle Panel Dimension Purlin Thickness No. of screws	NZ1 2 4m 20° 2m x 1m 1.5mm 2	factor - - - 1 1	Final factor Roof Zone Internal Zone Intermediate Zone Edge Zone Corner Zone
Example 2	Tin Roof Wind Region Terrain Category Building Height Tilt angle Panel Dimension Purlin Thickness No. of screws Site Elevation Sub-alpine Region	NZ2, with Mlee 3 12m 15° 1.75m x 1m 1.9mm 2 600m N2 (E=750m)	factor - - 1.11 1 0.81 -	Final factor Roof Zone Internal Zone Intermediate Zone Edge Zone Corner Zone
Example 3	Tin Roof Wind Region Terrain Category Building Height Tilt angle Panel Dimension Purlin Thickness No. of screws Sub-alpine Region	NZ3 3 5m 10° 2m x 1.1m 2.4mm 1 N1 (E=500m))	factor - - 1 1 -	Final factor Roof Zone Internal Zone Intermediate Zone Edge Zone Corner Zone
Example 4	Tile Roof Wind Region Terrain Category Building Height Tilt angle Panel Dimension Embedment F17 No. of screws Sub-alpine Region	NZ4 2 5m 25° 1.65m x 1.1m 30mm 2 N5 (E=200m)	factor - - 1.05 1	Final factor Roof Zone Internal Zone Intermediate Zone Edge Zone Corner Zone